Exploring Winter Mortality Variability in Five Regions of England Using Back Trajectory Analysis

Author:

Dimitriou K.1,McGregor G. R.2,Kassomenos P. A.1,Paschalidou A. K.3

Affiliation:

1. Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece

2. Department of Geography, Durham University, Durham, United Kingdom

3. Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece

Abstract

Abstract This paper aims to define atmospheric pathways related with the occurrence of daily winter low temperature episodes (LTE) in England, for the 26-yr period 1974–99, and to reveal possible associations with increased mortality rates. For this purpose, backward airmass trajectories, corresponding to LTE in five regions of England, were deployed. A statistically significant increase in mortality levels, at the 0.05 level, was found for LTE, compared to non-LTE days across all five regions. Seven categories of atmospheric trajectory patterns associated with LTE were identified: east, local, west, North Atlantic, Arctic, southwest, and Scandinavian. Consideration of the link between airmass trajectory patterns and mortality levels by region revealed a possible west-to-east split in the nature of air masses connected with elevated mortality. Specifically, for the West Midlands and northwest regions, relatively warm winter weather conditions from the west, most likely associated with the eastward progression of low pressure systems, are allied with the highest daily average mortality counts, whereas, for the northeast, Humberside/York, and southeast regions, cold continental air advection from northern or eastern Europe, which lasts for several days and is linked with either a blocking pattern over the western margins of Europe or an intense high pressure anomaly over eastern or northern Europe, appears important in mortality terms. This finding confirms that winter weather health associations are complex, such that climate setting and airmass climatology need to be taken into account when considering climate and health relationships.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3