The Structure and Evolution of Hurricane Elena (1985). Part II: Convective Asymmetries and Evidence for Vortex Rossby Waves

Author:

Corbosiero Kristen L.1,Molinari John1,Aiyyer Anantha R.1,Black Michael L.2

Affiliation:

1. Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

2. NOAA/AOML/Hurricane Research Division, Miami, Florida

Abstract

Abstract A portable data recorder attached to the Weather Surveillance Radar-1957 (WSR-57) in Apalachicola, Florida, collected 313 radar scans of the reflectivity structure within 150 km of the center of Hurricane Elena (in 1985) between 1310 and 2130 UTC 1 September. This high temporal and spatial (750 m) resolution dataset was used to examine the evolution of the symmetric and asymmetric precipitation structure in Elena as the storm rapidly strengthened and attained maximum intensity. Fourier decomposition of the reflectivity data into azimuthal wavenumbers revealed that the power in the symmetric (wavenumber 0) component dominated the reflectivity pattern at all times and all radii by at least a factor of 2. The wavenumber 1 asymmetry accounted for less than 20% of the power in the reflectivity field on average and was found to be forced by the environmental vertical wind shear. The small-amplitude wavenumber 2 asymmetry in the core was associated with the appearance and rotation of an elliptical eyewall. This structure was visible for nearly 2 h and was noted to rotate cyclonically at a speed equal to half of the local tangential wind. Outside of the eyewall, individual peaks in the power in wavenumber 2 were associated with repeated instances of cyclonically rotating, outward-propagating inner spiral rainbands. Four separate convective bands were identified with an average azimuthal velocity of 25 m s−1, or ∼68% of the local tangential wind speed, and an outward radial velocity of 5.2 m s−1. The azimuthal propagation speeds of the elliptical eyewall and inner spiral rainbands were consistent with vortex Rossby wave theory. The elliptical eyewall and inner spiral rainbands were seen only in the 6-h period prior to peak intensity, when rapid spinup of the vortex had produced an annular vorticity profile, similar to those that have been shown to support barotropic instability. The appearance of an elliptical eyewall was consistent with the breakdown of eyewall vorticity into mesovortices, asymmetric mixing between the eye and eyewall, and a slowing of the intensification rate. The inner spiral rainbands might have arisen from high eyewall vorticity ejected from the core during the mixing process. Alternatively, because the bands were noted to emanate from the vertical shear-forced deep convection in the northern eyewall, they could have formed through the axisymmetrization of the asymmetric diabatically generated eyewall vorticity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3