Statistical Prediction of Winter Haze Days in the North China Plain Using the Generalized Additive Model

Author:

Yin Zhicong1,Wang Huijun2

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, and Climate Change Research Center, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractWinter (December–February) haze days in the North China Plain (WHDNCP) have recently dramatically increased. In addition to human activities, climate change and variability also contributed to the severe situation and supported the possibility of seasonal predictions. In this study, using the generalized additive model (GAM), the sea surface temperature around the Alaska Gulf and sea ice area of the Beaufort Sea were selected as the predictors to establish a statistical prediction model (SPM). The difference between the current and previous year of WHDNCP (WDY) was predicted first and was then added to the observation of the previous year to obtain the final predicted WHDNCP. For WDY prediction, the root-mean-square error of the SPM using GAM was 3.01 days. In addition to the annual variation, the tropospheric biennial oscillation features and the dramatically increasing trend after 2010 were both captured successfully. Furthermore, for the final predicted WHDNCP anomalies, the long-term trend and turning points were simulated well, and the percentage of the same mathematical sign was 91.7%. Independent prediction tests were performed for 2014 and 2015, and the forecast bias was 0.86 and 0.19 days, respectively. To assess the predictive ability, recycling independent tests (including real-time hindcasts for the period 2005–15) were also applied, and the percentage of the same sign was 100%.

Funder

National Key Research and Development Plan

National Natural Science Foundation of China

CAS-PKU Partnership Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3