Trends in Wind Speed at Wind Turbine Height of 80 m over the Contiguous United States Using the North American Regional Reanalysis (NARR)

Author:

Holt Eric,Wang Jun

Abstract

AbstractThe trends in wind speed at a typical wind turbine hub height (80 m) are analyzed using the North American Regional Reanalysis (NARR) dataset for 1979–2009. A method, assuming the wind profile in the lower boundary layer as power-law functions of altitude, is developed to invert the power exponent (in the power-law equation) from the NARR data and to compute the following variables at 80 m that are needed for the estimation and interpretation of the trend in wind speed: air density, zonal wind u, meridional wind υ, and wind speed. Statistically significant and positive annual trends are found to be predominant over the contiguous United States, with spring and winter being the two largest contributing seasons. Positive trends in surface wind speed are generally smaller than those at 80 m, with less spatial coverage, reflecting stronger increases in wind speed at altitudes above the 80-m level. Large and positive trends in winds over the southeastern region and high-mountain region are primarily due to the increasing trend in southerly wind, while the trends over the northern states (near the Canadian border) are primarily due to the increasing trend in westerly wind. Trends in the 90th percentile of the annual wind speed, a better indicator for the trend in wind power recourses, are 40%–50% larger than but geographically similar to the trends in the annual mean wind speed. The probable climatic drivers for change in wind speed and direction are discussed, and further studies are needed to evaluate the fidelity of wind speed and direction in the NARR.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference50 articles.

1. Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements;Archer;J. Geophys. Res.,2003

2. Evaluation of global wind power;Archer;J. Geophys. Res.,2005

3. AWEA, cited 2009: Wind power outlook: 2009. American Wind Energy Association. [Available online at http://archive.awea.org/pubs/documents/Outlook_2009.pdf.]

4. The effects of atmospheric stability on coastal wind climates;Barthelmie;Meteor. Appl.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3