Katabatically Driven Cold Air Intrusions into a Basin Atmosphere

Author:

Whiteman C. David1,Lehner Manuela1,Hoch Sebastian W.1,Adler Bianca2,Kalthoff Norbert2,Haiden Thomas3

Affiliation:

1. University of Utah, Salt Lake City, Utah

2. Karlsruhe Institute of Technology, Karlsruhe, Germany

3. European Centre for Medium-Range Weather Forecasting, Reading, United Kingdom

Abstract

AbstractThe interactions between a katabatic flow on a plain and a circular basin cut into the plain and surrounded by an elevated rim were examined during a 5-h steady-state period during the Second Meteor Crater Experiment (METCRAX II) to explain observed disturbances to the nocturnal basin atmosphere. The approaching katabatic flow split horizontally around Arizona’s Meteor Crater below a dividing streamline while, above the dividing streamline, an ~50-m-deep stable layer on the plain was carried over the 30–50-m rim of the basin. A flow bifurcation occurred over or just upwind of the rim, with the lowest portion of the stable layer having negative buoyancy relative to the air within the crater pouring continuously over the crater’s upwind rim and accelerating down the inner sidewall. The cold air intrusion was deepest and coldest over the direct upwind crater rim. Cold air penetration depths varied around the inner sidewall depending on the temperature deficit of the inflow relative to the ambient environment inside the crater. A shallow but extremely stable cold pool on the crater floor could not generally be penetrated by the inflow and a hydraulic jump–like feature formed on the lower sidewall as the flow approached the cold pool. The upper nonnegatively buoyant portion of the stable layer was carried horizontally over the crater, forming a neutrally stratified, low–wind speed cavity or wake in the lee of the upwind rim that extended downward into the crater over the upwind sidewall.

Funder

Division of Atmospheric and Geospace Sciences

BMBF International Bureau

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3