Dominant Balances and Exchanges of the Atmospheric Water Cycle in the Reanalysis 2 at Diurnal, Annual, and Intraseasonal Time Scales

Author:

Ruane Alex C.1,Roads John O.1

Affiliation:

1. Experimental Climate Prediction Center, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract Output from the National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis 2 (R2) is passed through a broadband filter to determine the normalized covariances that describe the variance of the atmospheric water cycle at diurnal, annual, and intraseasonal (∼7–80 days) time scales. Vapor flux convergence is residually defined to close the water cycle between successive 3-hourly output times from 2002 to 2004, resulting in a balance between precipitation, evaporation, precipitable water tendency, and vertically integrated vapor flux convergence. The same balance holds at each time scale, allowing 100% of each variable’s temporal variance to be described by its covariance with other water cycle components in the same variance category. Global maps of these normalized covariances are presented to demonstrate the unique balances and exchanges that govern temporal variations in the water cycle. The diurnal water cycle is found to be dominated by a land–sea contrast, with continents controlled thermodynamically through evaporation and the oceans following dynamic convergence. The annual time-scale features significant meridional structure, with the low latitudes described mostly through variability in convergence and the extratropics governed by the properties of advected continental and maritime air masses. Intraseasonal transients lack direct solar oscillations at the top of the atmosphere and are characterized by propagating dynamic systems that act to adjust the precipitable water content of unsaturated regions or exchange directly with precipitation in saturated areas. By substituting the modeled precipitation with observation-based fields, a detailed description of the water cycle’s exchanges relating to the nocturnal precipitation maximum over the Midwest is obtained.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3