Evaluation of the National Hurricane Center’s Tropical Cyclone Wind Speed Probability Forecast Product

Author:

Splitt Michael E.1,Shafer Jaclyn A.1,Lazarus Steven M.1,Roeder William P.2

Affiliation:

1. Florida Institute of Technology, Melbourne, Florida

2. 45th Weather Squadron, Patrick AFB, Florida

Abstract

Abstract A tropical cyclone (TC) wind speed probability forecast product developed at the Cooperative Institute for Research in the Atmosphere (CIRA) and adopted by the National Hurricane Center (NHC) is evaluated for U.S. land-threatening and landfalling events over four hurricane seasons from 2004 to 2007. A key element of this work is the discernment of risk associated with the interval forecast probabilities for the three wind speed categories (i.e., 34, 50, and 64 kt, where 1 kt = 0.52 m s−1). A quantitative assessment of the interval probabilities (0–12, 12–24, 24–36, 36–48, 48–72, 72–96, and 96–120 h) is conducted by converting them into binary (yes–no) forecasts using decision thresholds that are selected using the true skill statistic (TSS) and the Heidke skill score (HSS). The NHC product performs well as both the HSS and TSS demonstrate skill out to the 48–72- and 72–120-h intervals, respectively. Overall, reliability diagrams and bias scores indicate that the NHC product has a tendency to overforecast event likelihood for cases where the forecast probabilities exceed 60%. Specifically, the NHC product tends to overforecast for the 34-kt category but underforecasts for the 64-kt category, especially at later forecast intervals. Results for the 50-kt category are mixed but also exhibit a tendency to underforecast during the latter intervals. Decision thresholds range from 1% to 55% depending on the selection method, wind speed category, and time interval. Given that the average forecast probabilities decrease with forecast hour, small forecast probabilities may be meaningful. The HSS is recommended over the TSS for decision threshold selection because the use of the TSS introduces significant bias and the HSS is less sensitive to filtering of correct negatives.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference26 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3