Affiliation:
1. Division of Atmospheric Sciences and Geophysics, Department of Physics, University of Helsinki, Helsinki, Finland
Abstract
Abstract
The objective of this work is to investigate whether a commercial ceilometer-type lidar can be used as a quantitative aerosol measurement instrument. To this end, lidar backscattering measurements are compared with exact theoretical calculations of backscattering, which are based on in situ–measured size distributions and account for uncertainties in particle composition and shape. The results show that the differences between simulated and measured backscattering remain nearly constant and within the uncertainties involved. The differences are most plausibly explained by an error in the overlap function of the lidar and/or errors in the calibration of either the lidar or the in situ instruments used to measure the aerosol size distribution. Occasionally, large differences occur that are obviously connected to the unrepresentativeness of the in situ and lidar measurement volumes because of insufficient atmospheric mixing. The results imply that the absolute accuracy of the instrument investigated might be sufficient for quantitative aerosol measurements in some applications. A fix for the overlap function, however, would be desirable.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献