Mechanisms of Northern Tropical Atlantic Variability and Response to CO2 Doubling

Author:

Breugem Wim-Paul1,Hazeleger Wilco1,Haarsma Reindert J.1

Affiliation:

1. Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Abstract

Abstract A model study has been made of the mechanisms of the meridional mode in the northern tropical Atlantic (NTA) and the response to a doubling of atmospheric CO2. The numerical model consists of an atmospheric general circulation model (GCM) coupled to a passive mixed layer model for the ocean. Results from two simulations are shown: a control run with present-day atmospheric CO2 and a run with a doubled CO2 concentration. The results from the control run show that the wind–evaporation–SST (WES) feedback is confined to the deep NTA. Furthermore, the temporal evolution of the meridional mode is phase locked with the seasonal cycle of the climatological intertropical convergence zone (CITCZ). The WES feedback is positive in boreal winter and spring when the CITCZ is located close to the equator but negative in summer and fall when the CITCZ shifts toward the north of the deep NTA. Similarly, the damping of the SST anomalies in the deep NTA by moisture-induced evaporation anomalies is much stronger in summer and fall than in winter and spring, related to a change in anomalous moisture transport. The results from the double-CO2 run show a substantial northward shift of the CITCZ in boreal winter and spring but little change in summer and fall. The change in the CITCZ can be explained by strong warming at the high northern latitudes in combination with a seasonally dependent WES feedback with accompanying changes in moisture transport in the deep NTA. The latter indicates that the change in the CITCZ is subject to phase locking with the seasonal cycle of the CITCZ itself. The meridional mode in the double-CO2 run weakens by 10%–20%. This originates from the weakening of the positive WES feedback in the deep NTA, which in turn is attributed to the northward shift of the CITCZ; because in the double-CO2 run the CITCZ stays south of the deep NTA for a shorter time period, the positive WES feedback in the deep NTA acts less long, and damping by moisture-induced evaporation anomalies starts earlier than in the control run.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3