CMIP5 Models’ Ability to Capture Observed Trends under the Influence of Shifts and Persistence: An In-Depth Study on the Colorado River Basin

Author:

Tamaddun Kazi Ali1,Kalra Ajay2,Kumar Sanjiv3,Ahmad Sajjad1

Affiliation:

1. Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Nevada

2. Department of Civil and Environmental Engineering, Southern Illinois University, Carbondale, Illinois

3. School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama

Abstract

AbstractThis study evaluated the ability of phase 5 of the Coupled Model Intercomparison Project (CMIP5) to capture observed trends under the influence of shifts and persistence in their data distributions. A total of 41 temperature and 25 precipitation CMIP5 simulation models across 22 grid cells (2.5° × 2.5° squares) within the Colorado River basin were analyzed and compared with the Climate Research Unit Time Series (CRU-TS) observed datasets over a study period of 104 years (from 1901 to 2004). Both the modeled simulations and observations were tested for shifts, and the time series before and after the shifts were analyzed separately for trend detection and quantification. Effects of several types of persistence were accounted for prior to both the trend and shift detection tests. The mean significant shift points (SPs) of the CMIP5 temperature models across the grid cells were found to be within a narrower range (between 1957 and 1968) relative to the CRU-TS observed SPs (between 1924 and 1985). Precipitation time series, especially the CRU-TS dataset, had a lack of significant SPs, which led to an inconsistency between the models and observations since the number of grid cells with a significant SP was not comparable. The CMIP5 temperature trends, under the influence of shifts and persistence, were able to match the observed trends very satisfactorily (within the same order of magnitude and consistent direction). Unlike the temperature models, the CMIP5 precipitation models detected SPs that were earlier than the observed SPs found in the CRU-TS data. The direction (as well as the magnitude) of trends, before and after significant shifts, was found to be inconsistent between the modeled simulations and observed precipitation data. Shifts, based on their direction, were found either to strengthen or to neutralize the preexisting trends in both the model simulations and the observations. The results also suggest that the temperature and precipitation data distributions were sensitive to different types of persistence—such sensitivity was found to be consistent between the modeled and observed datasets. The study detected certain biases in the CMIP5 models in detecting the SPs (tendency of detecting shifts earlier for precipitation and later for temperature than the observed shifts) and also in quantifying the trends (overestimating the trend slopes)—such insights may be helpful in evaluating the efficacy of the simulation models in capturing observed trends under uncertainties and natural variabilities.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3