Keys to Differentiating between Small- and Large-Drop Icing Conditions in Continental Clouds

Author:

Bernstein Ben C.1,Rasmussen Roy M.2,McDonough Frank3,Wolff Cory2

Affiliation:

1. Leading Edge Atmospherics, Longmont, Colorado

2. National Center for Atmospheric Research, Boulder, Colorado

3. Desert Research Institute, University of Nevada, Reno, Nevada

Abstract

AbstractUsing observations from research aircraft flights over the Great Lakes region, synoptic and mesoscale environments that appear to drive a relationship between liquid water content, drop concentration, and drop size are investigated. In particular, conditions that fell within “small drop” and “large drop” regimes are related to cloud and stability profiles, providing insight regarding whether the clouds are tied to the local boundary layer. These findings are supported by analysis of flight data from other parts of North America and used to provide context for several icing incidents and accidents where large-drop icing was noted as a contributing factor. The relationships described for drop size discrimination in continental environments provide clues that can be applied for both human- and model-generated icing forecasts, as well as automated icing algorithms.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3