Nowcasting Rainfall Fields Derived from Specific Differential Phase

Author:

Ruzanski Evan,Chandrasekar V.

Abstract

AbstractShort-term automated forecasting (nowcasting) of precipitation has traditionally been done using radar reflectivity data; recent research, however, indicates that using specific differential phase Kdp has several advantages over using reflectivity for estimating rainfall. This paper presents an evaluation of the characteristics of nowcasting Kdp-based rainfall fields using the Collaborative Adaptive Sensing of the Atmosphere Kdp estimation and nowcasting methods applied to approximately 42 h of X-band radar network data. The results show that Kdp-based rainfall fields exhibit lifetimes of ~17 min as compared with ~15 min for rainfall fields derived from reflectivity Zh in a continuous (cross correlation based) sense. Categorical (skill score based) lifetimes of ~26 min were observed for Kdp-based rainfall fields as compared with ~30 min for Zh-based rainfall fields. Radar–rain gauge verification showed that Kdp-based rainfall estimates consistently outperformed Zh-based estimates out to a lead time of 30 min, but the difference between the two estimators decreased in terms of normalized standard error with increasing lead time.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3