Barrier Wind Formation in the Upper Green River Basin of Sublette County, Wyoming, and Its Relationship to Elevated Ozone Distributions in Winter

Author:

Emery Brittni R.1,Montague Derek C.1,Field Robert A.1,Parish Thomas R.1

Affiliation:

1. Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Abstract

AbstractMeteorological factors affect the concentrations and distributions of pollutants during episodes of degraded air quality. Over the last 10 years, the upper Green River basin (UGRB) of Sublette County, Wyoming, has experienced numerous wintertime ozone episodes stimulated by emissions from oil and natural gas development operations, resulting in the region being determined to be in marginal nonattainment of the National Ambient Air Quality Standards. Examination of surface wind field patterns in the UGRB using observations from a network of surface monitoring stations for 2011 and 2012, with an emphasis on ozone-episode days, confirms that increased ozone concentrations are most frequently measured on days on which winds are light and variable. Dispersion and dilution of ozone and its precursor pollutants on these days is therefore inefficient, and so these episodes invariably occur within and close by the gas fields. On days that instead experience afternoon southeasterly winds, episodes can often be observed at locations on the northwestern perimeter of the basin remote from pollutant source regions. Simulations using the Weather Research and Forecasting Model, conducted for the case study of 15 February 2011, identify these southeasterlies as barrier winds caused by southwesterly flow at 700 hPa impinging on the Wind River Mountains that flank the UGRB to the northeast. Characterization of the barrier wind and the overall airflow patterns facilitates more accurate future forecasting of the time-dependent geographical distribution of increased concentrations of ozone and other pollutants in the region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3