Initiation and Propagation of an Atmospheric Bore in a Numerical Forecast Model: A Comparison with Observations

Author:

Osborne Simon R.1,Lapworth Alan1

Affiliation:

1. Met Office, Exeter, United Kingdom

Abstract

AbstractIn the autumn of 2016, an undular atmospheric bore passed over southern England. Observations at surface sites as the bore passed gave phase speeds of up to 30 m s−1, surface pressure rises of over 1.5 hPa, and abrupt wind direction changes of 90°, followed by slower changes of a further 180°. Use was made of this event, rarely observed in the United Kingdom, to compare surface and satellite observations of the bore with output from the operational Met Office limited-area 1.5-km numerical weather model and to investigate the bore initiation mechanism within the model. Although the model had timing errors of over an hour and orientation errors of the bore, the bore propagation was simulated fairly well, giving similar bore phase speeds and decay times. There was also a reasonable correlation between surface and satellite observations and the model. One significant difference was the longer bore wavelength in the model simulation.

Funder

Met Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3