High-Precision Measurements of the Copolar Correlation Coefficient: Non-Gaussian Errors and Retrieval of the Dispersion Parameter μ in Rainfall

Author:

Keat W. J.1,Westbrook C. D.1,Illingworth A. J.1

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

AbstractThe copolar correlation coefficient ρhv has many applications, including hydrometeor classification, ground clutter and melting-layer identification, interpretation of ice microphysics, and the retrieval of raindrop size distributions (DSDs). However, the quantitative error estimates that are necessary if these applications are to be fully exploited are currently lacking. Previous error estimates of ρhv rely on knowledge of the unknown “true” ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. Frequency distributions of ρhv estimates are in fact shown to be highly negatively skewed. A new variable, = log10(1 − ρhv), is defined that does have Gaussian error statistics and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, the manner in which the imperfect collocation of the horizontal and vertical polarization sample volumes may be accounted for is demonstrated. The possibility of using L to estimate the dispersion parameter μ in the gamma drop size distribution is investigated. Including drop oscillations is found to be essential for this application; otherwise, there could be biases in retrieved μ of up to approximately 8. Preliminary results in rainfall are presented. In a convective rain case study, the estimates presented herein show μ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3