Impact of Regional SST Anomalies on the Indian Monsoon Response to Global Warming in the CNRM Climate Model

Author:

Douville H.1

Affiliation:

1. Météo-France/CNRM, Toulouse, France

Abstract

Abstract While transient climate change experiments with coupled atmosphere–ocean general circulation models undoubtedly represent the most comprehensive tool for studying the climate response to increasing concentrations of greenhouse gases (GHGs), less computationally expensive time-slice experiments with atmospheric GCMs are still useful to test the robustness of the projected climate change. In the present study, three sets of time-slice experiments with prescribed sea surface temperature (SST) are compared to a reference climate scenario obtained with the Centre National de Recherches Météorologiques Coupled Climate Model (CCM). The main objective is to assess the sensitivity of the monsoon response to the magnitude or pattern of SST anomalies in two regions where such anomalies are highly model dependent, namely, the circumpolar Southern Ocean and the tropical Pacific Ocean. On the one hand, it is shown that the regional climate anomalies predicted by the CCM can be reproduced at least qualitatively by a pair of time-slice experiments in which the present-day SST biases of the CCM are removed. On the other hand, the results indicate that the Indian monsoon response to increasing amounts of GHG is sensitive to regional uncertainties in the prescribed SST warming. Increasing the sea surface warming in the southern high latitudes to compensate for the weak sea ice feedback simulated by the CCM around the Antarctic has a significant influence on the regional climate change simulated over India, through a perturbation of the regional Hadley circulation. Prescribing zonal mean rather than El Niño–like SST anomalies in the tropical Pacific has an even stronger impact on the monsoon response, through a modification of the Walker circulation. These results suggest that both deficiencies in simulating present-day climate (even at high latitudes) and uncertainties in the SST patterns caused by enhanced GHG concentrations (especially in the tropical Pacific) are major obstacles for predicting climate change at the regional scale.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3