Diagnosing Discrepancies between Observations and Models of Surface Energy Fluxes in a Midlatitude Lake

Author:

Taebel Zachary W.12,Reed David E.13,Desai Ankur R.1

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

2. b Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

3. c Environmental Science, University of Science and Arts of Oklahoma, Chickasha, Oklahoma

Abstract

Abstract The physical processes of heat exchange between lakes and the surrounding atmosphere are important in simulating and predicting terrestrial surface energy balance. Latent and sensible heat fluxes are the dominant physical process controlling ice growth and decay on the lake surface, as well as having influence on regional climate. While one-dimensional lake models have been used in simulating environmental changes in ice dynamics and water temperature, understanding the seasonal to daily cycles of lake surface energy balance and its relationship to lake thermal properties, atmospheric conditions, and how those are represented in models is still an open area of research. We evaluated a pair of one-dimensional lake models, Freshwater Lake (FLake) and the General Lake Model (GLM), to compare modeled latent and sensible heat fluxes against observed data collected by an eddy covariance tower during a 1-yr period in 2017, using Lake Mendota in Madison, Wisconsin, as our study site. We hypothesized transitional periods of ice cover as a leading source of model uncertainty, and we instead found that the models failed to simulate accurate values for large positive heat fluxes that occurred from late August into late December. Our results ultimately showed that one-dimensional models are effective in simulating sensible heat fluxes but are considerably less sensitive to latent heat fluxes than the observed relationships of latent heat flux to environmental drivers. These results can be used to focus future improvement of these lake models especially if they are to be used for surface boundary conditions in regional numerical weather models. Significance Statement While lakes consist of a small amount of Earth’s surface, they have a large impact on local climate and weather. A large amount of energy is stored in lakes during the spring and summer, and then removed from lakes before winter. The effect is particularly noticeable in high latitudes, when the seasonal temperature difference is larger. Modeling this lake energy exchange is important for weather models and measuring this energy exchange is challenging. Here we compare modeled and observed energy exchange, and we show there are large amounts of energy exchange happening in the fall, which models struggle to capture well. During periods of partial ice coverage in early winter, lake behavior can change rapidly.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3