Implementation of a semi-Lagrangian fully-implicit time integration of the unified soundproof system of equations for numerical weather prediction

Author:

Qaddouri Abdessamad1,Girard Claude1,Husain Syed Zahid1,Aider Rabah1

Affiliation:

1. 1 Atmospheric Numerical Prediction Research Section, Meteorological Research Division, Environment and Climate Change Canada, Dorval, QC H9P 1J3

Abstract

AbstractAn alternate dynamical core that employs the unified equations of A. Arakawa and C.S. Konor (2009) has been developed within Environment and Climate change Canada’s GEM (Global Environmental Multiscale) atmospheric model. As in the operational GEM dynamical core, the novel core utilizes the same fully-implicit two-time-level semi-Lagrangian scheme for time discretization while the log-pressure-based terrain-following vertical coordinate has been slightly adapted. Overall, the new dynamical core implementation required only minor changes to the existing informatics code of the GEM model and from a computational performance perspective, the new core does not incur any significant additional cost. A broad range of tests – that include both two-dimensional idealized theoretical cases and three-dimensional deterministic forecasts covering both hydrostatic and non-hydrostatic scales–have been carried out to evaluate the performance of the new dynamical core. For all the tested cases, when compared to the operational GEM model, the new dynamical core based on the unified equations has been found to produce statistically equivalent results. These results imply that the unified equations can be adopted for operational numerical weather prediction that would employ a single soundproof system of equations to produce reliable forecasts for all meteorological scales of interest with negligible changes for the computational overhead.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3