Understanding the Impacts of Upper-Tropospheric Cold Low on Typhoon Jongdari (2018) Using Piecewise Potential Vorticity Inversion

Author:

Yan Ziyu1,Ge Xuyang1,Wang Zhuo2,Wu Chun-Chieh3,Peng Melinda4

Affiliation:

1. a Key laboratory of Meteorological Disaster of Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

2. b Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

3. c Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

4. d University of Colorado, Colorado Springs, Colorado

Abstract

AbstractTyphoon Jongdari (2018) had an unusual looping path before making landfall in Japan, which posed a forecasting challenge for operational numerical models. The impacts of an upper-tropospheric cold low (UTCL) on the track and intensity of Jongdari are investigated using numerical simulations. The storm track and intensity are well simulated in the control experiment using the GFS analysis as the initial and boundary conditions. In the sensitivity experiment (RCL), the UTCL is removed from the initial-condition fields using the piecewise potential vorticity inversion (PPVI), and both the track and intensity of Jongdari change substantially. The diagnosis of potential vorticity tendency suggests that horizontal advection is the primary contributor for storm motion. Flow decomposition using the PPVI further demonstrates that the steering flow is strongly affected by the UTCL, and the looping path of Jongdari results from the Fujiwhara interaction between the typhoon and UTCL. Jongdari first intensifies and then weakens in the control experiment, consistent with the observation. In contrast, it undergoes a gradual intensification in the RCL experiment. The UTCL contributes to the intensification of Jongdari at the early stage by enhancing the eddy flux convergence of angular momentum and reducing inertial stability, and it contributes to the storm weakening via enhanced vertical wind shear at the later stage when moving closer to Jongdari. Different sea surface temperatures and other environmental conditions along the different storm tracks also contribute to the intensity differences between the control and the RCL experiments, indicating the indirect impacts of the UTCL on the typhoon intensity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3