Updraft Vertical Velocity Observations and Uncertainties in High Plains Supercells Using Radiosondes and Radars

Author:

Marinescu Peter J.1,Kennedy Patrick C.1,Bell Michael M.1,Drager Aryeh J.1,Grant Leah D.1,Freeman Sean W.1,van den Heever Susan C.1

Affiliation:

1. a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

AbstractObservations of the air vertical velocities (wair) in supercell updrafts are presented, including uncertainty estimates, from radiosonde GPS measurements in two supercells. These in situ observations were collected during the Colorado State University Convective Cloud Outflows and Updrafts Experiment (C3LOUD-Ex) in moderately unstable environments in Colorado and Wyoming. Based on the radiosonde accelerations, instances when the radiosonde balloon likely bursts within the updraft are determined, and adjustments are made to account for the subsequent reduction in radiosonde buoyancy. Before and after these adjustments, the maximum estimated wair values are 36.2 and 49.9 m s−1, respectively. Radar data are used to contextualize the in situ observations and suggest that most of the radiosonde observations were located several kilometers away from the most intense vertical motions. Therefore, the radiosonde-based wair values presented likely underestimate the maximum values within these storms due to these sampling biases, as well as the impacts from hydrometeors, which are not accounted for. When possible, radiosonde-based wair values were compared to estimates from dual-Doppler methods and from parcel theory. When the radiosondes observed their highest wair values, dual-Doppler methods generally produced 15–20 m s−1 lower wair for the same location, which could be related to the differences in the observing systems’ resolutions. In situ observations within supercell updrafts, which have been limited in recent decades, can be used to improve our understanding and modeling of storm dynamics. This study provides new in situ observations, as well as methods and lessons that could be applied to future field campaigns.

Funder

Monfort Excellence Fund

National Science Foundation

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3