Calibration of Sun Radiometer–Based Atmospheric Water Vapor Retrievals Using GPS Meteorology

Author:

Bokoye Amadou Idrissa1,Royer Alain1,Cliche Patrick1,O’Neill Norm1

Affiliation:

1. Centre d’Applications et de Recherches en Télédétection (CARTEL), Université de Sherbrooke, Québec, Canada

Abstract

A study of the validation and calibration process for integrated water vapor (IWV) measurements derived from sun radiometry at the 940-nm solar absorption channel employed in the Aerosol Robotic Network (AERONET) Aerosol Canada (AEROCAN) is presented. The sun radiometer data are compared with GPS meteorology records used as a reference. Three Canadian sites from different climatic regimes covering the period 2000–04 are considered. The observations from five different sun radiometers (IWV-SUN) were processed using the initial AERONET IWV retrieval procedure (V1) whereas GPS-derived IWV (IWV-GPS) was retrieved using “GPSpace” software developed by the Geodetic Survey division of Natural Resources Canada. A sensitivity study is carried out to highlight the influence of both central wavelength and signal amplitude on the 940-nm filter characteristics, which are instrument dependent and can drift due to aging. The comparison between IWV-SUN (V1) and IWV-GPS shows an average rmse of 0.23 ± 0.11 g cm−2 (22%) and a mean bias of −0.09 ± 0.16 g cm−2 (9%). Furthermore, it is shown that the use of GPS for determining the 940-nm channel calibration constants for the solar radiometers improves IWV retrievals (rmse reduced by about 35% and bias by a factor of 3–10) without any knowledge of the 940-nm filter characteristics. These results are discussed within the context of the new AERONET IWV processing procedure (V2), which accounts for solar 940-nm region filter characteristics. The GPS receiver technique appears to be a powerful calibration tool because of its continuous observation capability, its robustness, and its operational simplicity.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3