A Comparison of Ensemble Strategies for Flash Flood Forecasting: The 12 October 2007 Case Study in Valencia, Spain

Author:

Amengual A.1,Carrió D. S.1,Ravazzani G.2,Homar V.1

Affiliation:

1. Grup de Meteorologia, Departament de Física, Universitat de les Illes Balears, Palma, Mallorca, Spain

2. Gruppo di Idrologia Fisica, Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milan, Italy

Abstract

Abstract On 12 October 2007, several flash floods affected the Valencia region, eastern Spain, with devastating impacts in terms of human, social, and economic losses. An enhanced modeling and forecasting of these extremes, which can provide a tangible basis for flood early warning procedures and mitigation measures over the Mediterranean, is one of the fundamental motivations of the international Hydrological Cycle in the Mediterranean Experiment (HyMeX) program. The predictability bounds set by multiple sources of hydrological and meteorological uncertainty require their explicit representation in hydrometeorological forecasting systems. By including local convective precipitation systems, short-range ensemble prediction systems (SREPSs) provide a state-of-the-art framework to generate quantitative discharge forecasts and to cope with different sources of external-scale (i.e., external to the hydrological system) uncertainties. The performance of three distinct hydrological ensemble prediction systems (HEPSs) for the small-sized Serpis River basin is examined as a support tool for early warning and mitigation strategies. To this end, the Flash-Flood Event–Based Spatially Distributed Rainfall–Runoff Transformation–Water Balance (FEST-WB) model is driven by ground stations to examine the hydrological response of this semiarid and karstic catchment to heavy rains. The use of a multisite and novel calibration approach for the FEST-WB parameters is necessary to cope with the high nonlinearities emerging from the rainfall–runoff transformation and heterogeneities in the basin response. After calibration, FEST-WB reproduces with remarkable accuracy the hydrological response to intense precipitation and, in particular, the 12 October 2007 flash flood. Next, the flood predictability challenge is focused on quantitative precipitation forecasts (QPFs). In this regard, three SREPS generation strategies using the WRF Model are analyzed. On the one side, two SREPSs accounting for 1) uncertainties in the initial conditions (ICs) and lateral boundary conditions (LBCs) and 2) physical parameterizations are evaluated. An ensemble Kalman filter (EnKF) is also designed to test the ability of ensemble data assimilation methods to represent key mesoscale uncertainties from both IC and subscale processes. Results indicate that accounting for diversity in the physical parameterization schemes provides the best probabilistic high-resolution QPFs for this particular flash flood event. For low to moderate precipitation rates, EnKF and pure multiple physics approaches render undistinguishable accuracy for the test situation at larger scales. However, only the multiple physics QPFs properly drive the HEPS to render the most accurate flood warning signals. That is, extreme precipitation values produced by these convective-scale precipitation systems anchored by complex orography are better forecast when accounting just for uncertainties in the physical parameterizations. These findings contribute to the identification of ensemble strategies better targeted to the most relevant sources of uncertainty before flash flood situations over small catchments.

Funder

Secretaría de Estado de Investigación, Desarrollo e Innovación

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3