Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms

Author:

Gagne II David John1,Haupt Sue Ellen1,Nychka Douglas W.1,Thompson Gregory1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Deep learning models, such as convolutional neural networks, utilize multiple specialized layers to encode spatial patterns at different scales. In this study, deep learning models are compared with standard machine learning approaches on the task of predicting the probability of severe hail based on upper-air dynamic and thermodynamic fields from a convection-allowing numerical weather prediction model. The data for this study come from patches surrounding storms identified in NCAR convection-allowing ensemble runs from 3 May to 3 June 2016. The machine learning models are trained to predict whether the simulated surface hail size from the Thompson hail size diagnostic exceeds 25 mm over the hour following storm detection. A convolutional neural network is compared with logistic regressions using input variables derived from either the spatial means of each field or principal component analysis. The convolutional neural network statistically significantly outperforms all other methods in terms of Brier skill score and area under the receiver operator characteristic curve. Interpretation of the convolutional neural network through feature importance and feature optimization reveals that the network synthesized information about the environment and storm morphology that is consistent with our understanding of hail growth, including large lapse rates and a wind shear profile that favors wide updrafts. Different neurons in the network also record different storm modes, and the magnitude of the output of those neurons is used to analyze the spatiotemporal distributions of different storm modes in the NCAR ensemble.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference66 articles.

1. Abadi, M., and Coauthors, 2016: Tensorflow: A system for large-scale machine learning. Proc. 12th USENIX Symp. on Operating Systems Design and Implementation (OSDI’16), Savannah, GA, USENIX 265–283, https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.

2. Forecasting hail using a one-dimensional hail growth model within WRF;Adams-Selin;Mon. Wea. Rev.,2016

3. Evolution of WRF-HAILCAST during the 2014–16 NOAA/Hazardous Weather Testbed spring forecasting experiments;Adams-Selin;Wea. Forecasting,2019

4. Self-organizing maps for the investigation of tornadic near-storm environments;Anderson-Frey;Wea. Forecasting,2017

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3