Soil Field Model Interoperability: Challenges and Impact on Screen Temperature Forecast Skill during the Nordic Winter

Author:

Kristiansen Jørn1,Bjørge Dag1,Edwards John M.2,Rooney Gabriel G.2

Affiliation:

1. Norwegian Meteorological Institute, Oslo, Norway

2. Met Office, Exeter, United Kingdom

Abstract

AbstractThe high-resolution (4-km grid length) Met Office (UKMO) Unified Model forecasts driven by the coarser-resolution (8-km grid length) High-Resolution Limited-Area Model (HIRLAM), UM4, often produce significantly colder screen-level (2 m) temperatures in winter over Norway than forecast with HIRLAM itself. To diagnose the main error source of this cold bias this study focuses on the forecast initial and lateral boundary conditions, particularly the initialization of soil moisture and temperature. The soil variables may be used differently by land surface schemes of varying complexity, representing a challenge to model interoperability. In a set of five experiments, daily UM4 forecasts are driven by alternating initial and lateral boundary conditions from two different parent models: HIRLAM and Met Office North Atlantic and Europe (NAE). The experiment period is November 2007. Points for scientific examination into the topics of model interoperability and sensitivity to soil initial conditions are identified. The soil moisture is the main error source and is therefore important also in winter, rather than being a challenge only in summer. The day-to-day variability in the forecast error is large with the larger errors on days with strong longwave heat loss at the surface (i.e., the forecast sensitivity to soil moisture content is significant but variable). The much drier soil in HIRLAM compared to NAE reduces the heat capacity of the soil layers and affects the heat flux from the surface soil layer to the surface. Normalizing the respective soil moisture fields reduces these differences. The impact of ground snow is quite limited.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3