The Influence of Environmental Low-Level Shear and Cold Pools on Tornadogenesis: Insights from Idealized Simulations

Author:

Markowski Paul M.1,Richardson Yvette P.1

Affiliation:

1. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract Idealized, dry simulations are used to investigate the roles of environmental vertical wind shear and baroclinic vorticity generation in the development of near-surface vortices in supercell-like “pseudostorms.” A cyclonically rotating updraft is produced by a stationary, cylindrical heat source imposed within a horizontally homogeneous environment containing streamwise vorticity. Once a nearly steady state is achieved, a heat sink, which emulates the effects of latent cooling associated with precipitation, is activated on the northeastern flank of the updraft at low levels. Cool outflow emanating from the heat sink spreads beneath the updraft and leads to the development of near-surface vertical vorticity via the “baroclinic mechanism,” as has been diagnosed or inferred in actual supercells that have been simulated and observed. An intense cyclonic vortex forms in the simulations in which the environmental low-level wind shear is strong and the heat sink is of intermediate strength relative to the other heat sinks tested. Intermediate heat sinks result in the development (baroclinically) of substantial near-surface circulation, yet the cold pools are not excessively strong. Moreover, the strong environmental low-level shear lowers the base of the midlevel mesocyclone, which promotes strong dynamic lifting of near-surface air that previously resided in the heat sink. The superpositioning of the dynamic lifting and circulation-rich, near-surface air having only weak negative buoyancy facilitates near-surface vorticity stretching and vortex genesis. An intense cyclonic vortex fails to form in simulations in which the heat sink is excessively strong or weak or if the low-level environmental shear is weak.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference57 articles.

1. A numerical simulation of cyclic mesocyclogenesis;Adlerman;J. Atmos. Sci.,1999

2. Computational design of the basic dynamical processes of the UCLA general circulation model;Arakawa;Methods Comput. Phys.,1977

3. A synoptic and photographic climatology of low-precipitation severe thunderstorms in the southern plains;Bluestein;Mon. Wea. Rev.,1983

4. A benchmark simulation for moist nonhydrostatic numerical models;Bryan;Mon. Wea. Rev.,2002

5. Predicting supercell motion using a new hodograph technique;Bunkers;Wea. Forecasting,2000

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3