Linkages between Large-Scale Climate Patterns and Karst Spring Discharge in Northern China

Author:

Huo Xueli12,Liu Zhongfang3,Duan Qingyun1,Hao Pengmei4,Zhang Yanyan5,Hao Yonghong67,Zhan Hongbin7

Affiliation:

1. College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

2. College of Urban and Environmental Science, Tianjin Normal University, Tianjin, China

3. State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

4. School of Computer Software, Tianjin University, Tianjin, China

5. College of Mathematical Science, Tianjin Normal University, Tianjin, China

6. Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, China

7. Department of Geology and Geophysics, Texas A&M University, College Station, Texas

Abstract

Abstract The Niangziguan Springs (NS) discharge is used as a proxy indicator of the variability of the karst groundwater system in relation to major climate indices such as El Niño–Southern Oscillation (ENSO), Pacific decadal oscillation (PDO), Indian summer monsoon (ISM), and west North Pacific monsoon (WNPM). The relationships between spring discharge and these climate indices are determined using the multitaper method (MTM), continuous wavelet transform (CWT), and wavelet transform coherence (WTC). Significant periodic components of spring discharge in the 1-, 3.4-, and 26.8-yr periodicities are identified and reconstructed for further investigation of the correlation between spring discharge and large-scale climate patterns on these time scales. Correlation coefficients and WTC between spring discharge and the climate indices indicate that variability in spring discharge is significantly and positively correlated with monsoon indices in the 1-yr periodicity and negatively correlated with ENSO in the 3.4-yr periodicity and PDO in the 26.8-yr periodicity. This suggests that the oscillations of the spring discharge on annual, interannual, and interdecadal time scales are dominated by monsoon, ENSO, and PDO in the NS basin, respectively. Results show that monsoons modulate the spring discharge by affecting local meteorological parameters. ENSO and PDO impact the variability of the NS discharge by affecting the climate conditions in northern China.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3