Evaluating the Experimental High-Resolution Rapid Refresh–Alaska Modeling System Using USArray Pressure Observations

Author:

McCorkle Taylor A.1,Horel John D.1,Jacques Alexander A.1,Alcott Trevor2

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

2. NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract The High-Resolution Rapid Refresh–Alaska (HRRR-AK) modeling system provides 3-km horizontal resolution and 0–36-h forecast guidance for weather conditions over Alaska. This study evaluated the experimental version of the HRRR-AK system available from December 2016 to June 2017, prior to its operational deployment by the National Centers for Environmental Prediction in July 2018. Surface pressure observations from 158 National Weather Service (NWS) stations assimilated during the model’s production cycle and pressure observations from 101 USArray Transportable Array (TA) stations that were not assimilated were used to evaluate 265 complete 0–36-h forecasts of the altimeter setting (surface pressure reduced to sea level). The TA network is the largest recent expansion of Alaskan weather observations and provides an independent evaluation of the model’s performance during this period. Throughout the study period, systematic differences in altimeter setting between the HRRR-AK 0-h forecasts were larger relative to the unassimilated TA observations than relative to the assimilated NWS observations. Upon removal of these initial biases from each of the subsequent 1–36-h altimeter setting forecasts, the model’s 36-h forecast root-mean-square errors at the NWS and TA locations were comparable. The model’s treatment of rapid warming and downslope winds that developed in the lee of the Alaska Range during 12–15 February is examined. The HRRR-AK 0-h forecasts were used to diagnose the synoptic and mesoscale conditions during this period. The model forecasts underestimated the abrupt increases in the temperature and intensity of the downslope winds with smaller errors as the downslope wind events evolved.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3