Simulation of the Last 21 000 Years Using Accelerated Transient Boundary Conditions*

Author:

Timm Oliver1,Timmermann Axel1

Affiliation:

1. International Pacific Research Center, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract The earth system model of intermediate complexity ECBilt-CLIO has been used for transient simulations of the last deglaciation and the Holocene. The forcing effects of the ice sheets, greenhouse gas concentrations, and orbital configurations are prescribed as time-varying boundary conditions. In this study two key aspects of the transient simulations are investigated, which are of broader relevance for long-term transient paleoclimate modeling: the effect of using accelerated boundary conditions and of uncertainties in the initial state. Simulations with nonaccelerated boundary conditions and an acceleration factor 10 were integrated. These simulations show that the acceleration can have a significant impact on the local climate history. In the outcropping regions of the high southern latitudes and the convective regions in the North Atlantic, the acceleration leads to damped and delayed temperature response to the boundary conditions. Furthermore, uncertainties in the initial state can strongly bias the climate trajectories in these areas over 500–700 model years. The affected oceanic regions are connected to the large heat capacities of the interior ocean, which cause a strong delay in the response to the forcing. Despite the shown difficulties with the acceleration technique, the accelerated simulations still reproduce the large-scale trend pattern of air temperatures during the Holocene from previous simulations with different models. The accelerated transient model simulation is compared with existing proxy time series at specific sites. The simulation results are in good agreement with those paleoproxies. It is shown that the transient simulations provide valuable insight into whether seasonal or annual signals are recorded in paleoproxies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3