Neural Network Model to Predict a Storm Surge

Author:

de Oliveira Marilia M. F.1,Ebecken Nelson Francisco F.1,de Oliveira Jorge Luiz Fernandes2,de Azevedo Santos Isimar3

Affiliation:

1. Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

2. Departamento de Geografia, Instituto de Geociências, Universidade Federal Fluminense, Niterói, Brazil

3. Departamento de Meteorologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

Abstract The southeastern coast of Brazil is frequently affected by meteorological disturbances such as cold fronts, which are sometimes associated with intense extratropical cyclones. These disturbances cause oscillations on the sea surface, generating low-frequency motions. The relationship of these meteorologically driven forces in low frequency to the storm-surge event is investigated in this work. A method to predict coastal sea level variations related to meteorological events that use a neural network model (NNM) is presented here. Pressure and wind values from NCEP–NCAR reanalysis data and tide gauge time series from the Cananéia reference station in São Paulo State, Brazil, were used to analyze the relationship between these variables and to use them as input to the model. Meteorological influences in the sea level fluctuations can be verified by filtering the astronomical tide frequencies for periods lower than tidal cycles (periods higher than 24 h). Thus, a low-pass filter was applied in the tide gauge and meteorological time series for periods lower than tides to identify more readily the interactions between coastal sea level response and atmospheric-driven forces. Statistical analyses on time and frequency domain were used. Maxima correlations and coherence between the low-frequency sea level and meteorological series could be defined using the time lag of the NNM input variables. The model was tested for 6-, 12-, 18-, and 24-hourly forecasts, and the results were compared with filtered sea level values. The results show that this model is able to capture the effects of atmospheric and oceanic interactions. It can be considered to be an efficient model for predicting the nontidal residuals and can effectively complement the standard constant harmonic analysis model. A case study of a storm that impacted coastal areas of southeastern Brazil in March 1998 was analyzed and indicates that the neural network model can be effectively utilized in the Cananéia region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3