Effects of Sea Spray on Large-Scale Climatic Features over the Southern Ocean

Author:

Song Yajuan123ORCID,Qiao Fangli123,Liu Jiping4,Shu Qi123,Bao Ying123,Wei Meng123,Song Zhenya123

Affiliation:

1. a First Institute of Oceanography, Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China

2. b Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China

3. c Shandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China

4. d Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract The Southern Ocean, characterized by strong westerly winds and a rough sea state, exhibits the most pronounced sea spray effects. Sea spray ejected by ocean surface waves enhances heat and water exchange at the air–sea interface. However, this process has not been considered in current climate models, and the influence of sea spray on the coupled air–sea system remains largely unknown. This study incorporated a parameterization of the sea spray influence on latent and sensible heat fluxes into the First Institute of Oceanography Earth System Model version 2.0 (FIO-ESM v2.0), a climate model coupled with an ocean surface waves component. The results indicate that the spray-mediated enthalpy flux accounted for over 20%–50% of the total value. Sea spray promoted ocean evaporation and heat transport, resulting in air and ocean surface cooling and strengthened westerly winds. Furthermore, a moist and stable atmosphere favored an increase in cloud fraction over the Southern Ocean, particularly low-level clouds. Increased clouds reflected downward shortwave radiation and reduced solar radiation absorption at the surface. At present, the climate models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) still suffer notable deficiencies in reasonably reproducing the climatological features of the Southern Ocean, including warm SST and underestimated clouds biases with more absorbed shortwave radiation. Our results suggest that consideration of sea spray effects is a feasible solution to mitigate these common biases and enhance the confidence in simulations and predictions with climate models.

Funder

the National Key R&D Program of China

National Natural Science Foundation of China

the CAS Interdisciplinary Innovation Team

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3