Future Changes and Controlling Factors of the Eight Regional Monsoons Projected by CMIP6 Models

Author:

Jin Chunhan1,Wang Bin2,Liu Jian3

Affiliation:

1. Key Laboratory for Virtual Geographic Environment, Ministry of Education, State Key Laboratory Cultivation Base of Geographical Environment Evolution of Jiangsu Province, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing, China

2. Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

3. Key Laboratory for Virtual Geographic Environment, Ministry of Education, State Key Laboratory Cultivation Base of Geographical Environment Evolution of Jiangsu Province, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, and Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Mathematical Science, Nanjing Normal University, Nanjing, China

Abstract

AbstractAn accurate prediction of land monsoon precipitation (LMP) is critical for the sustainable future of the planet as it provides water resources for more than two-thirds of the global population. Here, we show that the ensemble mean of 24 CMIP6 (phase 6 of the Coupled Model Intercomparison Project) models projects that, under the Shared Socioeconomic Pathway 2–4.5 (SSP2–4.5) scenario, summer LMP will very likely increase in South Asia (~4.1% °C−1), likely increase in East Asia (~4.6% °C−1) and northern Africa (~2.9% °C−1), and likely decrease in North America (~−2.3% °C−1). The annual mean LMP in three Southern Hemisphere monsoon regions will likely remain unchanged due to significantly decreased winter precipitation. Regional mean LMP changes are dominated by the change in upward moisture transport with moderate contribution from evaporation and can be approximated by the changes of the product of the midtropospheric ascent and 850-hPa specific humidity. Greenhouse gas (GHG)-induced thermodynamic effects increase moisture content and stabilize the atmosphere, tending to offset each other. The spatially uniform increase of humidity cannot explain markedly different regional LMP changes. Intermodel spread analysis demonstrates that the GHG-induced circulation changes (dynamic effects) are primarily responsible for the regional differences. The GHGs induce a warm land–cool ocean pattern that strengthens the Asian monsoon, and a warm North Atlantic and Sahara that enhances the northern African monsoon, as well as an equatorial central Pacific warming that weakens the North American monsoon. CMIP6 models generally capture realistic monsoon rainfall climatology, but commonly overproduce summer rainfall variability. The models’ biases in projected regional SST and land–sea thermal contrast likely contribute to the models’ uncertainties in the projected monsoon rainfall changes.

Funder

National Natural Science Foundation of China

NSF/Climate Dynamics Award

National Key Research and Development Program of China

China Scholarships Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3