Affiliation:
1. a Lamont Doherty Earth Observatory, Columbia University, Palisades, New York
2. b Scripps Institute of Oceanography, University of California, San Diego, San Diego, California
Abstract
Abstract
The Indian Ocean has an intriguing intertropical convergence zone (ITCZ) south of the equator year-round, which remains largely unexplored. Here we investigate this Indian Ocean ITCZ and the mechanisms for its origin. With a weak semiannual cycle, this ITCZ peaks in January–February with the strongest rainfall and southernmost location and a northeast–southwest orientation from the Maritime Continent to Madagascar, reaches a minimum around May with a zonal orientation, grows until its secondary maximum around September with a northwest–southeast orientation, weakens slightly until December, and then regains its mature phase in January. During austral summer, the Indian Ocean ITCZ exists over maximum surface moist static energy (MSE), consistent with convective quasi-equilibrium theory. This relationship breaks up during boreal summer when the surface MSE maximizes in the northern monsoon region. The position and orientation of the Indian Ocean ITCZ can be simulated well in both a linear dynamical model and the state-of-the-art Community Atmosphere Model version 6 (CAM6) when driven by observed sea surface temperature (SST). To quantify the contributions of the planetary boundary layer (PBL) and free-atmosphere processes to this ITCZ, we homogenize the free-atmosphere diabatic heating over the Indian Ocean in CAM6. In response, the ITCZ weakens significantly, owing to a weakened circulation and deep convection. Therefore, in CAM6, the SST drives the Indian Ocean ITCZ directly through PBL processes and indirectly via free-atmosphere diabatic heating. Their contributions are comparable during most seasons, except during the austral summer when the free-atmosphere diabatic heating dominates the mature-phase ITCZ.
Significance Statement
The intertropical convergence zone (ITCZ) is the globe-encircling band where trade winds converge and strong rainfall occurs in the tropics. Its rains provide life-supporting water to billions of people. Its associated latent heating invigorates the tropical atmospheric circulation and influences climate and weather across the planet. The ITCZ is located north of the equator in most tropical oceans, except in the Indian Ocean where it sits south of the equator year-around. In contrast to the well-known northern ITCZs, the origin of the southern ITCZ in the Indian Ocean remains unknown. This work provides the first explanation for how ocean surface temperature works together with processes in the lower and upper atmosphere to shape the unique ITCZ in the Indian Ocean.
Publisher
American Meteorological Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献