Affiliation:
1. a Department of Atmospheric and Oceanic Science, University of Colorado Boulder, Boulder, Colorado
2. b Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
3. c Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
Abstract
Abstract
Atlantic multidecadal variability (AMV) impacts temperature, precipitation, and extreme events on both sides of the Atlantic Ocean basin. Previous studies with climate models have suggested that when external radiative forcing is held constant, the large-scale ocean and atmosphere circulation are associated with sea surface temperature (SST) anomalies that have similar characteristics to the observed AMV. However, there is an active debate as to whether these internal fluctuations driven by coupled atmosphere–ocean variability remain influential to the AMV on multidecadal time scales in our modern, anthropogenically forced climate. Here we provide evidence from multiple large ensembles of climate models, paleoreconstructions, and instrumental observations of a growing role for external forcing in the AMV. Prior to 1850, external forcing, primarily from volcanoes, explains about one-third of AMV variance. Between 1850 and 1950, there is a transitional period, where external forcing explains one-half of AMV variance, but volcanic forcing only accounts for about 10% of that. After 1950, external forcing explains three-quarters of AMV variance. That is, the role for external forcing in the AMV grows as the variations in external forcing grow, even if the forcing is from different sources. When forcing is relatively stable, as in earlier modeling studies, a higher percentage of AMV variations are internally generated.
Funder
Directorate for Geosciences
Publisher
American Meteorological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献