Madden–Julian Oscillation Impacts on Australian Temperatures and Extremes

Author:

Marshall Andrew G.1ORCID,Wheeler Matthew C.2,Cowan Tim32

Affiliation:

1. a Bureau of Meteorology, Hobart, Tasmania, Australia

2. b Bureau of Meteorology, Melbourne, Victoria, Australia

3. c Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia

Abstract

Abstract We assess seasonally varying impacts of the Madden–Julian oscillation (MJO) on Australian maximum and minimum temperature anomalies and extremes, and their modulation by El Niño–Southern Oscillation (ENSO), for the period June 1974–May 2022. Our composite-based approach uses observed temperatures from the Australian Gridded Climate Data, and 850-hPa wind data from the NCEP–NCAR reanalysis, to show how relationships to temperature and circulation evolve over the eight-phase life cycle of the MJO, which we derive from the real-time multivariate MJO index. The MJO has significant impacts on Australian temperatures and winds in all parts of the country at various times throughout the year, and to varying degrees. Two of the most pronounced impacts are 1) daytime warming across southeastern Australia in MJO phase 3 during spring associated with a strong anomalous anticyclone and 2) nighttime cooling over Queensland in MJO phase 7 during winter associated with anomalous advection of cool dry continental air. La Niña acts to significantly lessen both of these impacts, while El Niño enhances both the phase 3 warming over southern Australia in spring and the phase 7 overnight cooling over southern Queensland in winter. We show how the MJO can combine with El Niño and La Niña to have strong compounding influences, thus highlighting the importance of understanding interactions between multiple modes of climate variability and how they relate to Australian temperatures and extremes.

Funder

Meat and Livestock Australia

Queensland Government

University of Southern Queensland

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference62 articles.

1. Influence of sea surface temperature variability on global temperature and precipitation extremes;Alexander, L. V.,2009

2. MJO teleconnections to crop growing seasons;Anderson, W.,2020

3. The impact of the El Niño southern oscillation on maximum temperature extremes;Arblaster, J. M.,2012

4. Bureau of Meteorology, 2022: Climate Driver Update: Climate drivers in the Pacific, Indian and Southern Oceans and the tropics. Bureau of Meteorology, http://www.bom.gov.au/climate/enso/#tabs=Pacific-Ocean&pacific=History.

5. Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index;Camargo, S. J.,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3