Clear-Sky Direct Aerosol Radiative Forcing Uncertainty Associated with Aerosol Optical Properties Based on CMIP6 models

Author:

Zhang Lu1,Li Jing1,Jiang Zhongjing1,Dong Yueming1,Ying Tong1,Zhang Zhenyu1

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Abstract

Abstract The direct perturbation of anthropogenic aerosols on Earth’s energy balance [i.e., direct aerosol radiative forcing (DARF)] remains uncertain in climate models. These uncertainties critically depend on aerosol optical properties, primarily aerosol optical depth (AOD), single scattering albedo (SSA), and the asymmetry factor g. In this study, we investigate the intermodel spread of DARF across 14 global models within phase 6 of the Coupled Model Intercomparison Project (CMIP6), using unified radiative transfer calculation and aerosol optical parameter assumptions. The global mean DARF for clear sky in 2014 with respect to 1850 is estimated as −0.77 ± 0.52 W m−2 assuming an externally mixed state and −0.68 ± 0.53 W m−2 for an internally mixed state. We further conduct a quantitative analysis and find that globally, for the external mixing assumption, AOD is the dominant factor, whose intermodel spread results in 36% of the total DARF uncertainty. For the internal mixing assumption, SSA becomes the major factor, which also leads to 36% DARF uncertainty. The g parameter and aerosol vertical distribution combined contribute to ∼30% of the DARF uncertainty. Regionally, DARF uncertainty is typically more sensitive to SSA where the absorbing aerosol fraction is high, such as South Asia and central Africa. Substantial differences between model-averaged and observed aerosol optical parameters are still noticed, with external mixing in general yielding closer agreement with observations. Our results highlight the importance of aerosol scattering and absorption properties in DARF estimation.

Funder

national natural science foundation of china

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3