Direct Influence of Solar Spectral Irradiance on the High-Latitude Surface Climate

Author:

Jing Xianwen1,Huang Xianglei1,Chen Xiuhong1,Wu Dong L.2,Pilewskie Peter3,Coddington Odele3,Richard Erik3

Affiliation:

1. a Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan

2. b NASA Goddard Space Flight Center, Greenbelt, Maryland

3. c Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado

Abstract

AbstractNot only total solar irradiance (TSI) but also spectral solar irradiance (SSI) matter for our climate. Different surfaces can have different reflectivity for the visible (VIS) and near-infrared (NIR). The recent NASA Total and Spectral Solar Irradiance Sensor (TSIS-1) mission has provided more accurate SSI observations than before. The TSI observed by TSIS-1 differs from the counterpart used by climate models by no more than 1 W m−2. However, the SSI difference in a given VIS (e.g., 0.44–0.63 μm) and NIR (e.g., 0.78–1.24 μm) band can be as large as 4 W m−2 with opposite signs. Using the NCAR CESM2, we study to what extent such different VIS and NIR SSI partitions can affect the simulated climate. Two sets of simulations with identical TSI are carried out, one with SSI partitioning as observed by the TSIS-1 mission and the other with what has been used in the current climate models. Due to different VIS-NIR spectral reflectance contrasts between icy (or snowy) surfaces and open water, the simulation with more SSI in the VIS has less solar absorption by the high-latitude surfaces, ending up with colder polar surface temperature and larger sea ice coverage. The difference is more prominent over the Antarctic than over the Arctic. Our results suggest that, even for the identical TSI, the surface albedo feedback can be triggered by different SSI partition between the VIS and NIR. The results underscore the importance of continuously monitoring SSI and the use of correct SSI in climate simulations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3