Life Cycle of Major Sudden Stratospheric Warmings in the Southern Hemisphere from a Multimillennial GCM Simulation

Author:

Jucker Martin1ORCID,Reichler Thomas2

Affiliation:

1. a Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

2. b Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Abstract

Abstract Sudden stratospheric warmings (SSWs) are rare in the Southern Hemisphere (SH), making it difficult to study possible precursors or subsequent impacts. Using a multimillennial coupled climate model simulation producing 161 SSWs in the SH, we present a detailed study of their life cycle. We show that SH SSWs are predominantly displacement events forced by wave-1 planetary waves, and that a surface signature similar to the negative phase of the Southern Annular Mode (SAM) is detectable up to two months before the onset date, but there is a tendency for a transition from wave 1 before to zonally symmetric anomalies after onset. We identify a strong weakening of the Amundsen Sea low as one of the most prominent precursors, which weakens the climatological wave-2 and wave-3 stationary waves and strengthens wave-1 forcing. Compared to their northern counterparts, SH SSWs generally have a longer time scale, and while there is evidence of pre-onset forcing related to tropical sea surface temperatures, the Indian Ocean dipole is more important than El Niño–Southern Oscillation. Significance Statement Sudden stratospheric warmings (SSWs) are extreme events where the winter polar stratosphere warms within a few days to temperatures usually only experienced in summer. These events are rare in the Southern Hemisphere. Therefore, both the observational record and standard climate model simulations are not enough to understand how SSWs develop, or how they might change surface weather. Here we use very long global climate simulations that produce a large number of SSWs in the Southern Hemisphere to study the development and impact of these events. This includes possible precursors as well as the influence they have on surface weather after they occur.

Funder

ARC Centre of Excellence for Climate Extremes

National Science Foundation

Australian Research Council

National Energy Research Scientific Computing Center

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3