Skillful Subseasonal Prediction of United States Extreme Warm Days and Standardized Precipitation Index in Boreal Summer

Author:

Miller Douglas E.1,Wang Zhuo1,Li Bo2,Harnos Daniel S.3,Ford Trent4

Affiliation:

1. 1 Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois

2. 2 Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois

3. 3 Climate Prediction Center, NCEP/NWS/NOAA, College Park, MD, USA

4. 4 Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois

Abstract

AbstractSkillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is developed to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during boreal summer in the United States (US). We use a leading principal component of US soil moisture and an index based on the North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP’s Climate Forecast System version 2 (CFSv2) at weeks 3-4 in the eastern US. It is found that the North Pacific SST anomalies persist several weeks and are associated with a persistent wave train pattern (WTZ500), which leads to increased occurrences of blocking and extreme temperature over the eastern US. Extreme dry soil moisture conditions persist into week 4 and are associated with an increase in sensible heat flux and decrease in latent heat flux, which may help maintain the overlying anticyclone. The clear sky conditions associated with blocking anticyclones further decrease soil moisture conditions and increase the frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop planning, reservoir operation, and provide mitigation of impacts from extreme heat events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3