Arctic warming revealed by multiple CMIP6 models: evaluation of historical simulations and quantification of future projection uncertainties

Author:

Cai Ziyi1,You Qinglong12,Wu Fangying3,Chen Hans W.4,Chen Deliang5,Cohen Judah67

Affiliation:

1. 1 Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, 200438, Shanghai, China;

2. 2 Innovation Center of Ocean and Atmosphere System, Zhuhai Fudan Innovation Research Institute, Zhuhai, 518057, China;

3. 3 Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology (NUIST), Nanjing, Jiangsu 210044, China;

4. 4 Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden;

5. 5 Regional Climate Group, Department of Earth Sciences, University of Gothenburg, S-405 30 Gothenburg, Sweden;

6. 6 Atmospheric and Environmental Research Inc., Lexington, MA, USA;

7. 7 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Abstract

AbstractThe Arctic has experienced a warming rate higher than the global mean in the past decades, but previous studies show that there are large uncertainties associated with future Arctic temperature projections. In this study, near-surface mean temperatures in the Arctic are analyzed from 22 models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6). Compared with the ERA5 reanalysis, most CMIP6 models underestimate the observed mean temperature in the Arctic during 1979–2014. The largest cold biases are found over the Norwegian Sea, the Barents Sea, and the Kara Sea. Under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, the multi-model ensemble mean of 22 CMIP6 models exhibits significant Arctic warming in the future and the warming rate is more than twice higher than rates in the global/Northern Hemisphere. Model uncertainty is the largest contributor to the overall uncertainty in projections, which accounts for 55.4% of the total uncertainty at the start of projections in 2015 and remains at 32.9% at the end of projections in 2095. Internal variability uncertainty accounts for 39.3% of the total uncertainty at the start of projections but decreases to 6.5% at the end of the 21st century, while scenario uncertainty rapidly increases from 5.3% to 60.7% over the period from 2015-2095. It is found that the largest model uncertainties are consistent with the oceanic regions with cold biases in the models, which is connected with excessive sea ice area caused by the weak Atlantic poleward heat transport. These results suggest that the CMIP6 models’ simulation and projection of the Arctic near-surface temperature still exist large inter-model spread and uncertainties, and there are different behaviors over the ocean and land in the Arctic. Future research needs to pay more attention to the different characteristics and mechanisms of Arctic Ocean and land warming to reduce the spread.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3