Climate Feedback to Stratospheric Aerosol Forcing: The Key Role of the Pattern Effect

Author:

Günther Moritz1ORCID,Schmidt Hauke1,Timmreck Claudia1,Toohey Matthew2

Affiliation:

1. a Max Planck Institute for Meteorology, Hamburg, Germany

2. b Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Abstract

Abstract Volcanic aerosol forcing has previously been found to cause a weak global mean temperature response, as compared with CO2 radiative forcing of equal magnitude: its efficacy is supposedly low, but for reasons that are not fully understood. To investigate this, we perform idealized, time-invariant stratospheric sulfate aerosol forcing simulations with the MPI-ESM-1.2 and compare them with 0.5 × CO2 and 2 × CO2 runs. While the early decades of the aerosol forcing simulations are characterized by strong negative feedback (i.e., low efficacy), the feedback weakens on the decadal to centennial time scale. Although this effect is qualitatively also found in CO2-warming simulations, it is more pronounced for stratospheric aerosol forcing. The strong early and weak late cooling feedbacks compensate, leading to an equilibrium efficacy of approximately 1 in all simulations. The 0.5 × CO2 cooling simulations also exhibit strong feedback changes over time, albeit less than in the idealized aerosol forcing simulations. This suggests that the underlying cause for the feedback change is not exclusively specific to aerosol forcing. One critical region for the feedback differences between simulations with negative and positive radiative forcing is the tropical Indo-Pacific warm-pool region (30°S–30°N, 50°E–160°W). In the first decades of cooling, the temperature change in this region is stronger than the global average, whereas it is stronger outside it for 2 × CO2 warming. In cooling scenarios, this leads to an enhanced activation of the warm-pool region’s strongly negative lapse-rate feedback. Significance Statement Large volcanic eruptions can enhance the scattering aerosol layer in the stratosphere, which leads to a global cooling for a few years. Surprisingly, Earth has been found to cool less from radiative flux perturbations from stratospheric aerosol forcing, in comparison with how much it warms as a result of increases in CO2 concentration. We find that specific surface temperature change patterns after volcanic eruptions cause this effect. The temperature change in the tropical Indian and western Pacific Ocean determines how much global temperature change is needed to regain radiative equilibrium. Our findings contribute to understanding the climate response to volcanic eruptions and are relevant for understanding the mechanisms of climate change due to changes in CO2 concentration.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference74 articles.

1. Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks;Alexeev, V. A.,2005

2. Andrews, T., and M. J. Webb, 2018: The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming. J. Climate, 31, 641–654, https://10.1175/JCLI-D-17-0087.1.

3. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models;Andrews, T.,2012

4. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models;Andrews, T.,2015

5. Accounting for changing temperature patterns increases historical estimates of climate sensitivity;Andrews, T.,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3