A Modeling Study of Circulation and Eddies in the Persian Gulf

Author:

Thoppil Prasad G.1,Hogan Patrick J.1

Affiliation:

1. Open Ocean Processes and Prediction Section, Naval Research Laboratory, Stennis Space Center, Mississippi

Abstract

Abstract The circulation and mesoscale eddies in the Persian Gulf are investigated using results from a high-resolution (∼1 km) Hybrid Coordinate Ocean Model (HYCOM). The circulation in the Persian Gulf is composed of two spatial scales: basin scale and mesoscale. The progression of a cyclonic circulation cell dominates the basin-scale circulation in the eastern half of the gulf (52°–55°E) during March–July. This is primarily the consequence of density-driven outflow–inflow through the Strait of Hormuz and strong stratification. A northwestward-flowing Iranian Coastal Current (ICC; 30–40 cm s−1) between the Strait of Hormuz and north of Qatar (∼52°E) forms the northern flank of the cell. Between July and August the ICC becomes unstable because of the baroclinic instability mechanism by releasing the potential energy stored in the cross-shelf density gradient. As a result, the meanders in the ICC evolve into a series of mesoscale eddies, which is denoted as the Iranian coastal eddies (ICE). The ICE have a diameter of about 115–130 km and extend vertically over most of the water column. Three cyclonic eddies produced by the model during August–September 2005 compared quite well with the Moderate Resolution Imaging Spectroradiometer (MODIS) SST and chlorophyll-a observations. The remnants of ICE are seen until November, after which they dissipate as the winter cooling causes the thermocline to collapse.

Publisher

American Meteorological Society

Subject

Oceanography

Reference23 articles.

1. Note on the residual currents in the Arabian Gulf.;Abdelrahman;Cont. Shelf Res.,1995

2. Development of a new cross-calibrated, multi-platform (CCMP) ocean surface wind product.;Atlas,2009

3. 3D model application to study residual flow in the Arabian Gulf.;Azam;J. Waterw. Port Coastal Ocean Eng.,2006

4. Barotropic and tidal residual circulation in the Arabian Gulf.;Blain,1998

5. Modeling three-dimensional thermohaline-driven circulation in the Arabian Gulf.;Blain,2000

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3