Predicting Region-Dependent Biases in a GOES-16 Machine Learning Precipitation Retrieval

Author:

Goldenstern Eric1,Kummerow Christian1

Affiliation:

1. a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Despite its long history, improving upon current precipitation estimation techniques remains an active area of research. While many methods exist to assess precipitation, the use of satellites has allowed for near-global observation. However, satellites do not directly sense precipitation, resulting in retrieval uncertainties. Analysis of these uncertainties is typically conducted through validation studies, which, while necessary, are sensitive to local conditions. As such, predicting retrieval uncertainties where there is no validation data remains a challenge. In this study, we propose a method by which validation statistics can be extended to other regions. Using a neural network–style retrieval, the Geostationary Operational Environmental Satellite–16 (GOES-16) Precipitation Estimator using Convolutional Neural Networks (GPE-CNN), we show that, by exploiting the information content of both the satellite and ancillary meteorological data, one can predict large-scale retrieval behaviors over other regions without the need for that region’s validation data. By developing classes using satellite information content, we demonstrate bias prediction improvement of up to 83% relative to a simple extension of mean bias. Including relative humidity information improves the overall prediction by up to 98% relative to the original mean bias. Although limited in scope, this method presents a pathway toward characterizing uncertainties on a broader scale.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference36 articles.

1. The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84;Arkin, P. A.,1987

2. Relation of surface climate and burned area in Yellowstone National Park;Balling, R. C., Jr.,1992

3. The hydrological cycle and its influence on climate;Chahine, M. T.,1992

4. On the atmospheric branch of the hydrological cycle;Chen, T.-C.,1993

5. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system;Dee, D. P.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3