A simple method for surface radiation estimating using FY-4A data

Author:

Wang Lijuan12,Zuo Hongchao1,Wang Wei2

Affiliation:

1. a College of Atmospheric Sciences, Lanzhou University, Lanzhou, Gansu, China;

2. b Lanzhou Institute of Drought Meteorology, China Meteorological Administration/Key Laboratory of Drought Climate Change and Disaster Reduction in Gansu Province/Key Laboratory of Drought Climate Change and Disaster Reduction, China Meteorological Administration, Lanzhou, Gansu, China

Abstract

AbstractFY-4A is a geostationary meteorological satellite with four advanced payloads, which can be used to quantitatively detect the earth's atmospheric system with multi spectral and high spatial-temporal resolution. However, the applicable model limits the application of the FY-4A satellite data. In this paper, the empirical statistical model developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is extended for FY-4A Advanced Geosynchronous Radiation Imager (AGRI), and it is applied to observed data to evaluate the applicability of the model for AGRI measurements. To improve the accuracy of radiation estimation, the artificial intelligent particle swarm optimization (PSO) algorithm was used for model optimizing. Results show that the estimated radiation has diurnal variation, which accords with the characteristics of radiation variation. The estimated net surface shortwave radiation (Sn) and observed values show good correlation. However, large deviations from observations are found in the estimated values when the empirical model based on MODIS is directly used to process AGRI data. Thus, the empirical statistical model based on MODIS can be applied to AGRI data, but the empirical parameters need to be revised. Optimization of the empirical statistical model by the PSO algorithm can effectively improve the accuracy of radiation estimate. The Mean absolute percentage error (MAPE) of Sn estimated by optimized models is reduced to 15%. The MAPE of the net surface long-wave radiation (Ln) estimated by optimized models is reduced to 31%, and the MAPE of the net radiation (Rn) estimated by optimized models is reduced to 27%. However, for the uncertainty caused by error accumulation effect, the influence of PSO optimization on Rn is not as obvious as that of Ln. However, from the analysis of error distribution, it shows that PSO optimization does improve the estimation results of Rn. Based on AGRI data, the surface radiation can be estimated simply, and the regional or larger scale surface radiation retrieval can quickly realize by this method which has large application potential and popularization value.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3