The Perils of Regridding: Examples using a Global Precipitation Dataset

Author:

Rajulapati Chandra Rupa12,Papalexiou Simon Michael123,Clark Martyn P.12,Pomeroy John W.12

Affiliation:

1. 1 Centre for Hydrology, University of Saskatchewan, Saskatoon & Canmore Canada

2. 2 Global Institute for Water Security, University of Saskatchewan, Saskatoon Canada

3. 3 Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, Canada

Abstract

AbstractGridded precipitation datasets are used in many applications such as the analysis of climate variability/change and hydrological modelling. Regridding precipitation datasets is common for model coupling (e.g., coupling atmospheric and hydrological models) or comparing different models and datasets. However, regridding can considerably alter precipitation statistics. In this global analysis, the effects of regridding a precipitation dataset are emphasized using three regridding methods (first order conservative, bilinear, and distance weighted averaging). The differences between the original and regridded dataset are substantial and greatest at high quantiles. Differences of 46 mm and 0.13 mm are noted in high (0.95) and low (0.05) quantiles respectively. The impacts of regridding vary spatially for land and oceanic regions; there are substantial differences at high quantiles in tropical land regions, and at low quantiles in polar regions. These impacts are approximately the same for different regridding methods. The differences increase with the size of the grid at higher quantiles and vice versa for low quantiles. As the grid resolution increases, the difference between original and regridded data declines, yet the shift size dominates for high quantiles for which the differences are higher. Whilst regridding is often necessary to use gridded precipitation datasets, it should be used with great caution for fine resolutions (e.g., daily and sub-daily), as it can severely alter the statistical properties of precipitation, specifically at high and low quantiles.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference108 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3