On the Dynamical Control of the Mesosphere–Lower Thermosphere by the Lower and Middle Atmosphere

Author:

Smith Anne K.1,Pedatella Nicholas M.2,Marsh Daniel R.3,Matsuo Tomoko4

Affiliation:

1. National Center for Atmospheric Research,a Boulder, Colorado

2. National Center for Atmospheric Research, and University Corporation for Atmospheric Research, Boulder, Colorado

3. National Center for Atmospheric Research, Boulder, Colorado

4. University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract The NCAR Whole Atmosphere Community Climate Model (WACCM) is used to investigate the dynamical influence of the lower and middle atmosphere on the upper mesosphere and lower thermosphere. In simulations using a methodology adapted from the “specified dynamics” (nudged) version of the model, horizontal winds and temperature over part of the vertical range of the atmosphere are relaxed toward results from a previous simulation that serves as the true simulation, equivalent to meteorological analysis. In the upper mesosphere, the magnitude of the divergence of the constrained simulations from the true simulation depends on the vertical extent and frequency of the data used for nudging the model and grows with altitude. The simulations quantify the error growth of the model dynamical fields when data and forcing terms are known exactly and there are no model biases. The error growth rate and the ultimate discrepancy between the nudged and true fields depend strongly on the method used for representing gravity wave drag. The largest error growth occurs when the gravity wave parameterization uses interactive wave sources that depend on convective activity or fronts. Errors are reduced when the same parameterization is used with smoothly varying specified wave sources. The smallest errors are seen when the parameterized gravity wave drag is replaced by linear Rayleigh friction damping on the wind speed. These comparisons demonstrate the role of gravity waves in transporting the variability of the troposphere into the mesosphere and lower thermosphere.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3