The Subtropical Stratocumulus-Topped Planetary Boundary Layer: A Climatology and the Lagrangian Evolution

Author:

Eastman Ryan1,Wood Robert1,Ting O Kuan1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Prior work has shown that deeper planetary boundary layers (PBLs) are associated with cloud breakup and reduced droplet concentration in subtropical stratocumulus cloud decks, motivating a need for a thorough understanding of PBL mechanics. Here, 169 000 boundary layer trajectories are calculated in four eastern subtropical ocean basins following reanalysis winds at 925 mb (1 mb = 1 hPa). These trajectories combined with a twice-daily cloud-top-height-inferred PBL depth product allow for a comprehensive Lagrangian analysis of the stratocumulus (Sc)-topped PBL as the cloud deck transitions from Sc to trade cumulus (Cu). Month-to-month variations of this PBL product are strongly positively correlated with an independent PBL product derived from GPS radio occultation. A climatology shows the PBL deepening offshore in every region. The yearly cycle of PBL depth varies in opposition to the yearly cycle of lower-tropospheric stability (LTS), but high-frequency variation between LTS and PBL depth is more complex. Observed geographical patterns of Lagrangian PBL deepening rates appear nonuniform between and within study regions, with smaller regions of maximum deepening rates. A Lagrangian analysis suggests that many variables act to alter the PBL: increased sea surface temperature and droplet concentration act to deepen the PBL, while increases in upper-level humidity, LTS, precipitation, upper-level temperature, and subsidence lead to PBL shallowing.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3