Low-Dimensional Reduced-Order Models for Statistical Response and Uncertainty Quantification: Two-Layer Baroclinic Turbulence
Author:
Affiliation:
1. Department of Mathematics, and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York
Abstract
Publisher
American Meteorological Society
Subject
Atmospheric Science
Link
http://journals.ametsoc.org/jas/article-pdf/73/12/4609/4802779/jas-d-16-0192_1.pdf
Reference31 articles.
1. Low-frequency climate response of quasigeostrophic wind-driven ocean circulation;Abramov;J. Phys. Oceanogr.,2012
2. Surface climate variations over the North Atlantic Ocean during winter: 1900–1989;Deser;J. Climate,1993
3. The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model;Gettelman;J. Climate,2012
4. Climate response using a three-dimensional operator based on the fluctuation–dissipation theorem;Gritsun;J. Atmos. Sci.,2007
5. Climate response of linear and quadratic functionals using the fluctuation–dissipation theorem;Gritsun;J. Atmos. Sci.,2008
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Combining Stochastic Parameterized Reduced‐Order Models With Machine Learning for Data Assimilation and Uncertainty Quantification With Partial Observations;Journal of Advances in Modeling Earth Systems;2023-10
2. A data-driven statistical-stochastic surrogate modeling strategy for complex nonlinear non-stationary dynamics;Journal of Computational Physics;2023-07
3. Machine learning-based statistical closure models for turbulent dynamical systems;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-06-20
4. An efficient and statistically accurate Lagrangian data assimilation algorithm with applications to discrete element sea ice models;Journal of Computational Physics;2022-04
5. A data-driven, physics-informed framework for forecasting the spatiotemporal evolution of chaotic dynamics with nonlinearities modeled as exogenous forcings;Journal of Computational Physics;2021-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3