Retrospective Forecasts of Interannual Sea Surface Temperature Anomalies from 1982 to Present Using a Directly Coupled Atmosphere–Ocean General Circulation Model

Author:

DeWitt David G.1

Affiliation:

1. International Research Institute for Climate Prediction, Palisades, New York

Abstract

Abstract A large number of ensemble hindcasts (or retrospective forecasts) of tropical Pacific sea surface temperature (SST) have been made with a coupled atmosphere–ocean general circulation model (CGCM) that does not employ flux correction in order to evaluate the potential skill of the model as a seasonal forecasting tool. Oceanic initial conditions are provided by an ocean data assimilation system. Ensembles of seven forecasts of 6-month length are made starting each month in the 1982 to 2002 period. Skill of the coupled model is evaluated from both a deterministic and a probabilistic perspective. The skill metrics are calculated using both the bulk method, which includes all initial condition months together, and as a function of initial condition month. The latter method allows a more objective evaluation of how the model has performed in the context in which forecasts are actually made and applied. The deterministic metrics used are the anomaly correlation and the root-mean-square error. The coupled model deterministic skill metrics are compared with those from persistence and damped persistence reference forecasts. Despite the fact that the coupled model has a large cold bias in the central and eastern equatorial Pacific this coupled model is shown to have forecast skill that is competitive with other state-of-the-art forecasting techniques. Potential skill from probabilistic forecasts made using the coupled model ensemble members are evaluated using the relative operating characteristics method. This analysis indicates that for most initial condition months this coupled model has more skill at forecasting cold events than warm or neutral events in the central Pacific. In common with other forecasting systems, the coupled model forecast skill is found to be lowest for forecasts passing through the Northern Hemisphere (NH) spring. Diagnostics of this so-called spring predictability barrier in the context of this coupled model indicate that two factors likely contribute to this predictability barrier. First, the coupled model shows a too-weak coupling of the surface and subsurface temperature anomalies during NH spring. Second, the coupled-model-simulated signal-to-noise ratio for SST anomalies is much lower during NH spring than at other times of the year, indicating that the model’s potential predictability is low at this time.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-model prediction system for ENSO;Science China Earth Sciences;2023-05-15

2. 一个ENSO多模式集合预报系统介绍;SCIENTIA SINICA Terrae;2023-05-15

3. Probabilistic Prediction of ENSO Over the Past 137 Years Using the CESM Model;Journal of Geophysical Research: Oceans;2022-12

4. Evolution of the NMME Rainfall Seasonal Forecasting over Central Africa;Journal of Extreme Events;2022-12

5. A Decade of the North American Multimodel Ensemble (NMME): Research, Application, and Future Directions;Bulletin of the American Meteorological Society;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3