Surface Wave Effects on the Wind-Power Input to Mixed Layer Near-Inertial Motions

Author:

Liu Guoqiang1,Perrie William2,Hughes Colin2

Affiliation:

1. School of Marine Sciences, Nanjing University of Information Science and Technology, and Jiangsu Research Center for Ocean Survey and Technology, Nanjing, Jiangsu, China, and Department of Engineering Mathematics and Internetworking, Dalhousie University, Halifax, and Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada

2. Department of Engineering Mathematics and Internetworking, Dalhousie University, Halifax, and Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada

Abstract

AbstractOcean surface waves play an essential role in a number of processes that modulate the momentum fluxes through the air–sea interface. In this study, the effects of evolving surface waves on the wind-power input (WPI) to near-inertial motions (NIMs) are examined by using momentum fluxes from a spectral wave model and a simple slab ocean mixed layer model. Single-point numerical experiments show that, without waves, the WPI and the near-inertial kinetic energy (NI-KE) are overestimated by about 20% and 40%, respectively. Globally, the overestimate in WPI is about 10% during 2005–08. The largest surface wave effects occur in the winter storm-track regions in the midlatitude northwestern Atlantic, Pacific, and in the Southern Ocean, corresponding to large inverse wave age and rapidly varying strong winds. A relatively low frequency of occurrence of wind sea is found in the midlatitudes, which implies that the influence of evolving surface waves on WPI is intermittent, occurring less than 10% of the total time but making up the dominant contributions to reductions in WPI. Given the vital role of NIMs in diapycnal mixing at the base of the mixed layer and the deep ocean, the present study suggests that it is necessary to include the effects of surface waves on the momentum flux, for example, in studies of coupled ocean–atmosphere dynamics or climate models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Startup Foundation for Introducing Talent of NUIST

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Natural Science Foundation of Jiangsu Province

National Programme on Global Change and Air-Sea Interaction

Canada’s Program on Energy Research and Development, Canadian Space Agency’s GRIP

Canada-Surface Water and Ocean Topography mission

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3