A Conceptual Model of Polar Overturning Circulations

Author:

Haine Thomas W. N.1

Affiliation:

1. a Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Abstract

AbstractThe global ocean overturning circulation carries warm, salty water to high latitudes, both in the Arctic and Antarctic. Interaction with the atmosphere transforms this inflow into three distinct products: sea ice, surface Polar Water, and deep Overflow Water. The Polar Water and Overflow Water form estuarine and thermal overturning cells, stratified by salinity and temperature, respectively. A conceptual model specifies the characteristics of these water masses and cells given the inflow and air–sea–land fluxes of heat and freshwater. The model includes budgets of mass, salt, and heat, and parameterizations of Polar Water and Overflow Water formation, which include exchange with continental shelves. Model solutions are mainly controlled by a linear combination of air–sea–ice heat and freshwater fluxes and inflow heat flux that approximates the meteoric freshwater flux plus the sea ice export flux. The model shows that for the Arctic, the thermal overturning is likely robust, but the estuarine cell appears vulnerable to collapse via a so-called heat crisis that violates the budget equations. The system is pushed toward this crisis by increasing Atlantic Water inflow heat flux, increasing meteoric freshwater flux, and/or decreasing heat loss to the atmosphere. The Antarctic appears close to a so-called Overflow Water emergency with weak constraints on the strengths of the estuarine and thermal cells, uncertain sensitivity to parameters, and possibility of collapse of the thermal cell.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3